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THE NON-LINEAR THEORY OF FREE ELECTRON LASERS AND

EFFICIENCY ENHANCEMENT

1. INTRODUCTION

Free electron lasers (FELs) based on backscattering from relativistic electron beams have

demonstrated a unique potential for becoming a new type of coherent radiation source. In prin-

ciple, these radiatfzn sources will be characterized by output wavelengths ranging from the mil-

limeter to beyond the optical regime, frequency tunability, very high power levels and high

etficiencies.

Theoretical analysis on the FEL mechanism has been carried out in the single particle'-18

as well as the collective scattering regime. 7 1, Is. 17-26 Also, non-linear processes and saturation

efficiencies have been considered for various FEL scattering regimes.6
.8, 117.19,23.24.27

The operative mechanism in FELs is a parametric process in which a long wavelength

pump field interacts with a beam of relativistic electrons. Under certain conditions the incident

pump field will decay into a longitudinal wave (density wave) and a backscattered electromag-

netic wave which is double doppler upshifted in frequency. The longitudinal wave (also re-

ferred to as density wave, beat wave or ponderomotive wave) results from the coupling of the

ix. •pump field and the electromagnetic field through the v x B/c force term. The ponderomotive

wave plays a central role in the linear and non-linear development of the scattering process. Its

Manuscript submitted July 19, 1979.
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SPRANGLE, TANG, AND MANHEIMER

effects on the electron beam Is closely analogous to the role played by the negative energy

(slow space charge) wave in conventional traveling wave mechanisms.

1 he pump field may take the form of a static spatially periodic magnetic or electric field or

a propagating electromagnetic wave. in this paper we take the pump to be a static, periodic

right-handed, helically polarized, magnetic field. The frequency of the scattered radiation is

given by

, (1 + v2/c) y2 v,(2,/l/) --- 4 C/.

where

V2- (1 )-1/2,

v. is the axial beam velocity and I is the pump period. The possibility of using a two-stage FEL

scattering process, in order to reduce the electron energy required for very short output

wavelengths, 'i-: been suggested. 14, t8

Roughly speaking, FELs can be divided into two categories, depending on the gain of the

radiation field. In the low gain regime, the overall spatially integrated gain is due to wave in-

terference effects and is much less than unity. This is a single pairticle (,.ollective effects are

not manifested through space charge fields) scattering regime and is exemplified by experiments

at Stanford University.28'29

The high gain FELs are characterized by stimulated radiation fields which grow exponen-

tially in the linear regime. Experiments with intense relativistic electron beams performed at

NRL, Columbia University and Cornell University fall into this class.3 - 35 For a detailed

theoretical discussion of the various FEL mechanisms the reader is referred to Refs. (11), (17)

and (18).

2
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NIOL MEMORANDUM REPORT 4034

The main ojetves of this work are to present a self-conlsstent 0',n-l1near formulation of

the IRL mectimiam and to theoretically analyze some of the concepts necessary to develop

efficient, high power, tunable FEL radiation sources. Some of the salient features of this theory

include: i) completely arbitrary magnetic pump field (period and amplit'de can be functions of

axis! position) 1i) space charg effects, Il) arbitrary polarization of the radiation field, Iv) com-

pletely relativistic particle dynamics and v) frequency and spatial harmonics in the excited

fields. The non-linear formalism developed for the FEL problem is also applicable to a large

class of temporal steady state convective processes. Our formulation of the problem permits

the spatial dependence of the pump magnetic field to be arbitrary. Hence, efficiency enhance-

ment schemes which utilize amplitude and wavelength spatial variations of the pump field can

be analyzed. The spatial variation of the scattered radiation amplitude and wavelength occurs

on a scale-length which is large compared to the wavelength of the pump field. This permits

numerical solutions for cases where the electron beam energy is extremely high. That is, in

this approach, there is no large separation of spatial scale lengths, despite the litrge sp-tial scale

S difference between the wavelength of the scattered field and the pump field, so arbitrarily high

values of the relativistic gamma factor, -y, associated with the beam, can be considered. Fur-

thermore, the formulation is carried )ut in the laboratory frame under temporal steady state

conditions.

The analytical formulation of the general non-linear steady state FEL problem consists

essentially of three parts. In section II, the wave equation1s are used to derive expressions for

the slow spatial evolution of the amplitudes and phases of the scatterec fields in terms of the

driving currents. Then, in section III, the driving currents are expressed as functions of the

dynamics of the particle ensemble (electron distribution function). The ptille orbit equations

are written self.consistently in terms of the scattered fields in section IV. The orbit equations

describing the motion transverse and parallel to the electron stream are completely decoupled.

3
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SPRANGLE. TANG, AND MANHEIMER

The linear spatial growth rates, efficien.ies and saturated field amplitudes are derived i" section

V for various scattering regimes. Finally a number of ,rnalytical/numerical illustrations in the

high pin scattering regime are given in section V1. The non-linear particle dynamic is dis-

cussed in some detail. Efficiency curves are obtained, awd a method of dramatically incteasing

the single pass efficiency, as suggested in Ref. (17), by contouring both the pump period and

magnetic fluid is analyzed."' For instance, efficiency of >20% are shown to be 'heoretically pos-

sible at optical wavelengths using this approagh. The basic idea is to gradually slow down the

phase velocity of the ponderomotive wave at the point where the electrons are deeply trapped

in the ponderomotive wave potentials. The slowing down of the wave is accomplished by adia-

batically decreasing the pump field period. Appendix A contains the formulation of the FEL

process with spatial and remporal harmonics in both the radiation and space charge fields. Also

included in this formulationi is the ability of the radiation field to undergo a change in polariza-

tion from a circularly polarized to an elliptically polarized wave as the particle dynamics become

non-linear.

The resulting set of non-linear coupled equations self-consistently relate the spatial

dynamics of the particles and fields. These equations have been solved analytically in the linear

approximation and the linear dispersion relation was obtained. The full set of non-linear cou-

pled equations are readily solved numerically for the spatial growth rate and saturation level of

the scattered fields.

II. NON-LINEAR EVOLUTION OF SCATTERED WAVES

The physical model which we will develop is that of a fully relativistic electron beam in-
L|

teracting with a spatially periodic pump magnetic field as depicted in Fig. (1). Only spatial vari-

ations along the z axis will be considered for the electron beam, pump field and scattered radia-

tion field.

4
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The variable amplitude and period pump magnetic field can be expressed in terms of thd

vector potential

A.() A (zWfcos (Jk(~zji.+ airi(J k.()dj ',I.()

where the amplitude A4(z) and wavenuniber k,(z) are known and slowly varying functions of

z. The potential field in (1) is a good approximation to a right-handed polarized helical magnet-

ic field near the z-axis of an appropriate coil winding. The pump magnetic field associated with

(1) is given by

B - 8O(z) offZ k.(z')dz + P W) i, + sin(f 0 k.(z)dz' + (Z) ',1. (2)

where

B,(z) - - ((ko(z)A,(z))2 + (8A,,(z)/Iz) 2 )112

and

~~ (z) -2 A. 8A (2)/i

are slowly varying functions of z. The period of the magnetic field is

1(z) - 2n-/(k(z) + 8O1/8z) 2wrlko(z). (3)

The scattered electromagnetic and electrostatic fields in terms of the vector potential j

A(zwt) and scalar potential 0 (z,t) are taker to be .

A(zUt) - A (z) costJ"k+(z')dz' - (At + 9) -- A,(z)sinjf0 k+(z')&z' - cat + 0) ,

.(z,:) - O(z) cos *c(:!')dz' - wt + 0,1. (4a,b)

M~ 4
where the amplitudes of the potentials, A,(z). 4(z) and W(z) a• well ai the wavenunibers

k+(z) and k(z) are slowly varying functions of z, The scattered electromagnietic fiuld

represented by Eq. (4a) is a right-handud elliptimlly polarized field traveling towards the right.

75 _



SPRANOLE, TANG, AND MANHEIMER

The frequency w of the field and the phases, 0 and 09, ame independ-snt of L In appendix A, the

general form for the scattered fields is used In the non4linear formulation of the problem.

However, In the main body of the text, the fields In Eqs. (4) will be used In order to minimize

the notational algebra.

The evolution of the scattered potentials is governed by the wave equations

I 0-2 72 Tr.2 4w

and

814141~t) - 4wI,(i) (Sa,b)

Where JGz,: is the driving current density. Substituting the potentials of Eqs. (4) into (5) we

obtain

W10- k' Wz) A,W~z cos #(ztr)

12+/2(z-P (A,,(z) k.+2 Wz) sin *(zj) 'a- .~(m,),

-2k+11 (Az)j-

(z)x k4' W:) cos *(z,,) -4(~

sin #,(z~t) + k(z) #Wz cos *,(zt) - Lw- J(),(6a,b,c)

where

-f0  4 :)dx u + 9,

and

C A- fo k(z') dz' - wt + 0,.

Terms proportional to 02 A /8:2 have been. neglected from (6). The neglect of 82A /W: terms is

not central to our formulation, though it can be shown to be an excellent approximation which

44
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simplifies the final FEL equations. The coefficients of the sinusoidal terms on the left hand

side of Eqs. (6) are slowly varying functions of r and independent of L The alguments of the

sinusoidal terms on the other hMad are rapidly varying function of t for t fixed. The rapidly

Cos
time varying terms, in for example Eq. (6a), can be removed by multiplying it by (in#e(zt)

and taking the temporal average over one wave period, i.e., (*/2w) fo23 ". Perorminl this

operation on Eq. (6a) as well as similar ones on Eqs. (6b,c) we obtain

(,#Ic2 - kl (W)) A,,() -W f "J, W) cos V(A A

2k+4n (z)- (A,(z)k+ 2 (z)) - W.e , (z) sin 0(z.m) d.

2- (z)) A,, (Z) - 4M. , 1  (.s (
2 -o ( () s#... t)

2 -z (A4(a) k/ 2 .(z)) tf0  .1,, (a,,) Cos *(2.t) dt.

4 f. J,(zt) sin ,,(za) dt.

k(z) #(z) - 4 fo ,o z)cs*(~)d.M1

I11. DERIVATION OF NON-LINEAR DRIVING CURRENTS

It is now necessary to derive expresticns for the x, y and z components of the current

densities and perform the time integration specified in Eqs. (7). In general the non-thermal

electron distribution function, written in terms of the olectron orbits, is

f(A. . ) ' - no f • (I - f(to, t) 8 (D, - If, (to. I))

8(p, - 'Q,('. )) 8 (p, - -,(40, i))do (8)

where no is the uniform particle density to the left of the interaction region, i.e., z 4(0 v0 o Is

the constant axial electron velocity for z 4 0, C((O, 6 is the axial position of the particle at

7
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q

time t which croesed the z - 0 plane at time to and -q(to. t) is the momentum vector of the

particle at time t which crossed the 2 - 0 plane at time to. Thermal effects which are charac-

teristic of actual electron beams can be easily included by appropriately modifying the electron

distribution function in (8). The integral over to in Eq. (8) takes into account the continuous

flow nf particles into the interaction region. The current density associated with this electron

distribution is

J(z. 1) - -tel f _P.- 0 f(z, p. t)d 3 p

-tel nov2  f- YJt3,o )
"-lei J ( (to, )) 8 (z - (to, M))dto, (9)

where y(ýj) - (I +ij 2 /,p2 c') 112. As will be seen later it is necessary to rewrite Eq. (9) in the

form

S-tel noo f _(:o, ,)6(: - r(io, z))
J(Z, t) e Ino Yr,))l (t(,. t)/0, Z lto,. (10)

where

?t~o, Z) - to + .(o , Z') 01

is the time it takes a particle to reach the position z if it entered the interaction region, z - 0, at

time to and Y,(to. z) is the axial velocity of a particle at position z which was at z - 0 at time to.

The quantity 8O (to. 6)/8r is the axial velocity v, of a particle at time t which was at z - 0

at time to. Clearly, for J(z, 6) to be finite, Y, should not vanish in the interaction region. If v,

vanishes and particles are turned around, multi-streaming develops and the entire concept of

exp (-iwt) being the only time dependence is undermined (due to, for instance, two-stream

instabilities). We assume here that no particle is slowed down to zero velocity in the laboratory

frame, hence

Y(i-i (to. M)) mo li(to, 6)/18l -%J(to. 6). (12)

8
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Substituting (12) into (10), the general form for the driving current becomes

JVz, z) It I e no V'O f (t,1 80e - 'r(to, z))dt0 . (13)
'f_(to, t)

Substituting the above form for J(z. t) into the right-hand-side of Eqs. (7), we obtain the self-

consistent amplitudes and phases of the scattured potentials in terms of driving currents. To

show how ihe right-hand-sides of Eqs. (7) can be reduced by using Eq. (13), we simplify Eq.

(7a) as an illustration.

Substituting the x-component of Eq. (13) into (7a) gives

(WC/2 - k+2 (z)) A, (z) - d m d 0t G, (to' z, 0) 8(0 - T(to. z)), (14a)

where 't .x (to, t)
G,(to, z, t) - 4 I"eno vfo "u-I'- 1.Qs 0(z,t). (14b)

C '%(to, t)

Since the system of particles and fields are in the temporal steady state, particles which

cross the z - 0 plane separated in time by 2ir/wz will execute identical orbits which are separat-

ed in time by 2wr/w. It is. therefore, possible to define an initial beam segment, "beamlet," for

•v -which all possible steady state orbits of the actual beam particles are represented by the particles

in the beamlet, but are displaced in time. The axial length of the beamlet is clearly 2w v,01,.

With these considerations in mind we find that the function G6(tz,z,t) and. r(to, z) have certain

periodic properties in their arguments which permit the integrals in (14) to be greatly

simplifietd, Specifically we note that

G 6(to, Zt) - to + 2,wN t + 2rN

and Gz

SZ) - t"O + 2.!!'L 2J -. iN (15a,b)

whore N - 0, *1, 2 ..... The t integration in Eq. (14a) is over one wave period, 0 to

"2w/w. From Eq. (15b) we see that over this range of t the argument of the delta function will

vanish over an interval in t, equal to 2#r/w. Therefore, it is not necessary to integrate over t,

from -vo to +oo. Finally from the property of Gx(t 0, zt) expressed in (15a) we find that

9
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SPRANOLE, TANG, AND MANHEIMER

, dA d!, Go(l(, z,) 8(0 -TO(iO, z))

f G(t,' , rr(r°. z)) dto.

This can be seen most easily in a diagram, of the region of Integration in Fig. 2, where the en.

tire (t, t,) plane is broken into squares of 2#r/w on a side. Because of the symmetry property

expressed in Eqs. (1Sa) and (1Sb), the value of the Integrand is unchanled along a diagonal;

this is indicated by certain squares having the same letter. Clearly then, an integral in the verti-

cal direction, over the shaded squares, is the same as an integral in the horizontal direction,

over the slashed squares. Substituting (16) together with (14b) into (14s) results in a

simplified form for Eq. (7a). All the integrals on the right hand side of Eqs. (7) can be re.

duced in exactly the same way. Doing this we find that Eqs. (7) can be put into the form

(W2/c2 - k (z)) A,,(x)
Vzo 2,/.. % (to., r(to, Z))

-4 2wo vz(to, j'(to, z)) iCo *(z,Zr(toZ)) dt,,

C~ f:/ v,l(to, -r(t°, )

1 -41, no e ,o r(t , z~o, )) sin #(z,,r(t.,,)) dto.

(oC2/c2 - k2 (z)) AY(z)
W oo n y Q. 'rt° , (t ., Z))-- 4 IeI n. L's a) fo 'r(to, (,Z))" inh,•(to.,)) alto,

2k4'/ (z) "• (A,(z) k+11 (z))
V, 20 qy'" 'to., j.•O, )

- -4 II n. ; 'o ",(io, -(to z)) cos #(z,vr(to,z)) dto,nC fo T"(io ~,,f))

S- -- 41,, n. vl2, l sin ,(z,,.(toz)) d°,,

8We

k(z)A(z) - -"el1In. vo fo cosok(zw(toz)) dt.. (17a-f)

10
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Notice that on the right-hand-side, of the above equatiuns the single integrals over t,, re from 0

to 2w/w. As we will see, these integrals can be evaluated numerically by fq11owi1 .g the orbits of

a relatively 9mall number of particles which enter the interaciion region in any single time in-

terva! of durltior1 2-./,1. ;Upno deriving tho general orbit equations for the particle ensemble,

in the next section, we will assume that the scattered electromagnetic wave is circularly polar-

1zed, i.e., A(z)- Ay(z). This assumption ts clearly not centra! to our formulation.

IV, PARTICLE ORBIT EQUATIONS

We now express the particle orbits, which are needed for the evaluation of Eqs. (17) in

terms of the. new independent variables to and z. The forces exerted on the electrons arise

from the pump aid scattered potentials given in Eqs. (1) and (4). We immediately note that

the transverie canonical momenta of :he particles is conserved. Therefore, if both the pump

and scattered fields are zero as z -, -•, the transverse particle momeuta are given by
ýe

4 P(z, t) - -J (A•,(z) + A,(;, t)),
C

k and

p'(z, t) -e[(A,(z) + A,(z, t)). (18a,b)

-• Using Eqs. (18) the longitudinal component of the force equation can be put into the form

____(z,_t)I-jell-I dp,(z, t) . -I2 I-(A (z) + A(z, M))2 - 2,(z, t) 'mc 2  ,(, t) (19)
dt 2y(z, t) mc0 8: eT 7, '

where p,(z, 0 is the axial momentum and the relativistic gamma factor is

y(z, ) - + ItL (Ao(z) + A(z, t))2 + P1c• . (20) A
(Z'' 0 .c2

Equations (18), (19) and (20) specify the particle dynamics in terms of the pump snd scattered

fields. The transverse and longitudinal particle motion is formally decoupled. To write Eqs.

(18) and (19) in terms of the new independent variables z and t,, we note that

!• 11

• ;.fii
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SPRANGLE, TANG, AND MAN'tIEMMER

t (to, •) - t" +J dz'/v,(t0 , z'),

di
d V.(: T) d

where V.(z, r) - v,.t 0 ,z). Note that d(which follows a particle orbit) • - (which is taken

av constant time).

In terms of z and r we simply get

pAz, r) - (,4,(z) + A,(z, TW)),
C

p1(z, r) -L -.. (Ao,(Z) + A,(z. r)),
C

dpz2(Nzp r) _ e _1~i~Am-C?
dz - (Ao(z) + A(z, 1-))2 -2(z, " ec a (z ") a,b,c)

We have expressed the particle orbits i. terms of the entry time t, and: a.Wal position z. Note

that our definition of ihe momenta implies tih.t, 'ix(to. a-) - px(), r). (to, 7-) - py(z, r-), and

v7,(to, T) = p,(z, 7-) - 7(z, 7-) m, Vz(C,, r). At this poitit we take the scattered electromagnetic

wave to be circularly polarized and set A,(z) .-.4y(z) -A (z). To obtain the finai set of equa-

tions for the amplitude A (z) .at-d wavenur.ber k+ (z) we first combine Eqs. (17a) and (17b)

with Eqs. (17c) and (17d) respectively. Using the expressions for 71., and 71y given by Eqs.

(21a,b) we arrive at tne following expressions

(w2/c2 - ki.,)) AM (A.) 7771 0 J , a(t, z)) M

AO(7) coslf (k+(z') 4 k,(z')) dz' - w '(t0 , z) + 0 + .4 (z) dto.

12
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S242 (z) L(A (z) k}*2(t)) - -fO , / ., 0  )

IA,,(z) sin f(k+(z) + k.(z')) dz- wi(to, T) + 0  . (22a,b)

where we have used Eqs. (1) and (4a) for Ao(Z) and A(z, 0) and wb (4r let2 nvme)12 2.

For completeness we rewrite Eqs. (17e) and (17f) for the scalar potential I
,"o' r " -ow

- 0  n2  2 /u fZ-+
f " e . sin k(z')dz' - .n(t 0 ,z) + Oz dto,

. ~ ~-,,. ,o Mo r,,C£
k(W) (.-) - -2 - 1, 10 . cos k(z)dz' - ow(toz) + 9zLdto. (23a,b)

c2 V lei o1'

The relevant particle dynamics is contained in Eq. (21b) which is rewritten in the form

,-LP (Ao) + A(),,r))2 - m, 2 0zi (24)

whe.)+l
S]i1/2,

(ZT)- + moC lAolz) + A (Z,,r)12 + c(to2 4

.(to,Z) - to + ,(to (to Z)) dz',

(A°(z) + A(z, r)) " Ao2(z) + A 2(z)

+ 2Ao(z)A (z) cos KJ (k+(z') + ko(z'))dz',- wr + 0). (25a,b,c)

The non-linear formulation of the FEL is fully described by Eqs. (22), (23) and (24). The

ponderomotive potential piays a central role in axially bunching the electron. From Eq. (24)

we see that this potential is giveni by

•--o
tx(Z,) Ao(z)A(z) cos (k+(z') + k.(z')) dz' - wr + *). (26)

13
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The amplitude and phase of the scattered fields as well as the axial beam momentum all vary

with a characteristic axial length which is much longer than the pump wavelength L This fact

allows for inexpensive numerical simulations to be performed in the laboratory frame with ex-

tremely high gamma electron beams.

fo see that the system quantities vary on a scale length long compared to 1, we note that

the characteristic length, as estimated from the arguments of the sinusoidal terms on the right-

hand-side of Eqs. (22), (23) and (24), is roughly equal to L = (k+ + k, - w/v,)-'. However,

since the frequency of the scattered radiation is w' - ck Q (1 + P,) yv,/ k, we find that

L >> /lk, - 1/2w.

This fact permits us to sol ve numerically the FEL equations for arbitrarily high gamma beams.

The more conventional simulation approaches suffer from the problem of large temporal or spa-

tial scale differences even in the beam frame of reference.

To complete our formulation of FELs we need an expression for the efficiency. The

efficiency can be defined as the ratio of the electromagnetic energy flux increase to the initial

electron energy flux, that is

c <E(zt) x B(zt)>, - <E(o,t) x B(ot)>,
} "4ii v,,n.(v.-1)m'c 2  , (27)

where E - c-1A/8t, B - x OA/8z, <.">, denotes an average over the field period 2w/w,

and v,, n, and yo are the initial beam axial velocity, density and total gamma factor.

Using the vector potential in Eq. (4a) and taking the radiation field to the circularly polar-

ized, i.e., A, - AY - A, the efficiency in Eq. (27) takes the form

SI.[elI' 2 (k+(z)Al(z) - k+(O)A 2 (O))
Mc (28)

and is maximum when the radiation fields saturate.

14
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V. DERIVATION OF LINEAR GROWTH RATES, EFFICIENCIES

AND SATURATION FIlZ'D AMPLITUDES

In this section we present the salient features of the FEL in the linear regime. Results for

the linear growth rate and expressions for the saturation efficiency and radiation amplitude are

obtained in the high gain case, i.e., where the radiation field amplitude has e-folded at least a

few times. For a more detailed derivation of these quantities see Refs. (17) and (18).

In the high gin linear regime the excited space charge and vector potentia|i are of the

form

Vbz't) - im ei'a-uf) + c.C.,
2

A(z2) e + iL,) + c.c., (29)
2

where . (0) and A (0) are the potential amplitudes at the input end of the interaction region,

z- 0, and the wavenumbers, k and k+ are complex and independent of z. For a magnetic pump

of the form in Eq.(l) with constant amplitude and period and cold electron beam, the disper-

sion relation is

2

D(w, k+) ((w-v,,k) 2 - (P/(vvo))- " o b .,) 2 D(ow, k), (30)

where D(oj, k) - w- c2k2 
- 2 /y., k+ - k - k., ko is the pump wavenumber,

w.- (4w je 2n.Im.)"/2 is the beam plasma frequency, v,. is the axial beam velocity,

v.L- elBo/(Aymock.) is the transverse beam velocity, B. is the pump amplitude,

Yo - (1 - I -1,o - v / - v•o/c and v~, - (l - •zo)-/ 2 . Since the elec-

tromagnetic wave approximately satisfies the dispersion relation oJ/c = k+ we can replace

D(o,, k+) and D(w, k) by -2k+(k+ - (W2 - Wo/y.) 1 / 2/C) and -2k kc 2 respectively. The

dispersion relation can now be put into the simple form

8k (8k + 2f k./-y.)(8k - Ak) --- a2 ko/2, (31)

A

15
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where k - w//v + ko/1, + tk, 8k is complex, 8 kI << k, E - C ko)

Ak - k. - w/(2cy.), and a 2 _ (•. 1 k.) 2. Equation (31) assumes that the beam is relativistic

v,, == c and w > > wb/l•"Ry. Two distinct regimes can be distinguished from the dispersion re-

lation in (31).

a) Weak Magnetic Pump Limit

For a pump magnetic field strength such thAt # < < , 4(C/v) 1/2 the space charge

potential dominates tho ponderomotive potential and collective effects play an important role.

In this regime of scattering the'dispersion retation in (31) yields

8k - Ak - 7 / (Ak)2 (32)2 T

for the growing root. Maximum spatial linear growth occurs when there is no frequency

mismatch, i.e., Ak - 0 and is given by

12

Fmu. - -/im (Sk)mx - -(a ./1)/2. (33)

b) Strong Magnetic Pump Limit

In this regime, defined by the condition o..L > > ?,,h, space charge forces are dominated

by ponderomotive forces. This is a single partice scattering regime and Eq. (31) reduces to

(8k) 2(8k - Ak) - - a 2 k./2. (34)

The maximum spatial linear growth rate according to (34) occurs for exact frequency matching,

i.e., Ak - 0 and is given by

rm, - - Im (ak)m,, - 3 (,f 0 .±) 213k0 . (35)

To obtain est mates for the saturation levels in the high gain regimes we resort to heuris-

tic arguments based on electron trapping dynamics. It can be argued that at saturation, when

electrons are deeply trapped, the axial velocity of the electron beam has decreased by the

16
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amount 2Av where Av -Y, - v•p is the difference between the equilibrium axial beam velocity

and the initial phase velocity of the total longitudinal wave, i.e., Vp - w/Re(k). The decrease

in the particle kinetic energy is

ALK.E. 2yo.-y•m.v&v. (36)

so the eneray conversion efficiency becomes

AEK.l

(?Y.-o)m.c 2

- 27y(v - u/Re(k))/c. (37)

Substituting Re(k) - w/v. + f k./. + Re(8k) and w - 22 cko into (37), the expression for

efficiency becomes

,q t /,/. + Re(8k)lke, (38)

where Re(8k) is determined from the solution of the dispersion relation in (31). Using Eqs.

(31) and (38) we find that in the weak pump and strong pump limit the growth rate maximizes

when Ak 0- , i.e., wi - 2"ycko, and the efficiency at saturation is respectively'

7- (39)

and

-413(fp..)2/3 + fpy.. (40) 1
Applying the conservation law for total energy flui we find that the megnitude of the vector po-

tential at saturation is

2 1'2I I ( 4 1 )

where q is given by either (39) or (40) depending on whether the weak or strong pump limit is

applicable.

*~ i 1 7 I
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VI. RESULTS AND DISCUSSION

In this section we present the numerical results fo." the coupled non-linear FEL equations

in (22), (23) ind (24). Illustrations for a wide range of parameters ranging from the submil-

limeter to the optical radiation regine are given. The mono-energetic electron beam enters the

interaction region at z - 0 with a uniform density. The magnetic pump field given in (I) is as-

sumed to be built up adiabatically from z < 0 to its initial value at z - 0. In all of our numeri-

cal simulations a small amplitude radiation field is introduced as a perturbation at z - 0 and al-

lowed to grow spatially and self-consistently accoiding to the FEL equations. The small initial

radiation field, typically less than 0.1% of the saturated field amplitude, allows for a long spatial

region of linear interaction and, hence, for an accurate comparison with the linear theory

presented in section V. Furthermro., space charge fields ure included in all of our numerical

illustrations even though in some wises the ponderomotive field may dominate the process as is

the case in the strong magnetic pump scattering limit.

We will first consider two examples where the magnetic pump partmeters are fixed, i.e.,

constant amplitude and periot, Further, iore, we will show that efficiency can be increased to a

few 10's of percent even in the opticil regime by contouring the mag.-itic pump period 4nd

amplitude.

a) Constant Magnetic Pump Illustrations

Two examples will be discuss%%i in some detail: 1) optical 'adiation at X - 0.75 jtm from

a 66 MeV electron beam and 2) submillimeter radiation at ? - 338 stm with a 2 6 MeV elec-

tron beam. Table I lists the salient paramrters for the magnetic pump, electron beam and out-

put radiation of both examples.

18
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For the optical radiation case, example 1, the magnetic pump amplitude is 6.0 kG and the

period is fixed at 1.5 cm. The 66 MeV (C, - 131), 2 kA electron beam has a transverse equlli-

brium velocity of v, - 6A4 x 10-3 c with the given value of magnetic pump field. The critical

transverse velocity, see Pection V, is V, - 1.5 x 10-3 c, hence the scattering process is in the

strong pump regime.

Figure (3) shows the amplitude of the vector potential of the scattered radiation, A (z),

and the spatial growth rate, r - O(lnA (z))/Oz, as a function of z. Those plots are for an optical

frequency of wi - 2-f,' ck. - 2.525 x 10's sec-1. Notice that in Fig. (3) there is a long spatial

region where the growth rate is fairly constant. This is the linear region of the interaction. The

value of the radiation frequency in this figure has been chosen to maximize the linear growth

rate, i.e., zero frequency mismatch, Ak - 0. The linear e-folding length associated with this

output frequency is 38 cm.

Figure (4) shows a comparison between the spatial growth rates obtained from the linear

regime of the numerical simulation of our FEL equations (crosses (x)) and the linear growth

rates obtained from the dispersion relation in Eq. (30), (solid curve) over the frequency spec-

trum. These two independent calculations of the linear growth rate are in excellent agreemewt. ,

Figure (4) also compares the efficiency at saturation obtained by solving the FEL equations

(circles (0)) with the calculated values of efficiency using electron trapping arguments (dotted

curve) given in section V. Using the value of efficiency for maximum linear growth rate, we

find from Eq. (41) that the saturated vector potential amplitude is A, - 28 volts, correspond-

' ing to an efficiency of 0.37%, whereas Fig. (3) gives a value of 33 volts for A., corresponding

to an officiency of 0.52%. The higher calculated efficiency can be explained by the slight in-

crease of the wave number of the scattered radiation, k+, just before saturation, solid curve in

Fig. (5). When k+ increases, the phase velocity of the ponderomotive potential,

19

77.



SPRANOLE, TANG, AND MANHEIMER

i/(k+(z) .+ t0o()), decreas. As the electrons become trapped at the bottom of the potential

well, the ponderomotive wave slows down slightly, hence, the particles are able to transfer

more kinetic enterly to the scattered radiation. This is clearly a non-linear effect, which linear

theory could not predict. The dotted curve in Fig. (5) is the variation of the wave number of

the space charge wave, The effects of the space charge wave is negligible, since in the strong

pump linmit, example 1, the ponderomotive potential is much larger than the space charge po-

tential as can be seen in Fig. (6).

To understand the phenomenon of trapping, phase space plots are a revealing tool. Fig-

ures (7&-d); are plots of the relative time the particles In one beamlet cross the following axial

positions: z - 0,0 m, 2.0 m, 4 0 in, 4.3 m and 4.5 m. Twenty particles are labeled w'thin the

beamlet. At the initial position, z - 0, the particles enter at equal intervals in time since they

have uniform axial velocity, v,'. At z - 2 m down stream into the interaction region, the parti-

cles are in the linear regime where the growth rate or the scattered radiation is constant. Some

particles have gained energy while others have lost energy depending on their phase relation

with the ponderomotive potential. At z - 4 m, Fig. (7b), the phase space plot begins to show

the signs of trapping. Many of the particles are crossing the z - 4 m plane at about the same

time. However, their velocity spread is large. Figure (7c), at z - 4.3 m, depicts the particles

before saturation and shows definite signs of trapping. At z - 4.5 m, particles labelled 4-9 in

Fig. (7d) shows -spatial bunching and small velocity spread; these particles are deeply trapped.

If the amplitude and period of the magnetic pump field is held fixed, the scattered radiation will

reach its maximum value at this axial position.

Our non-linear formulation is also applied to a case where the outp.ut radiation is in the

submillimeter regime, example 2 in Table I. The pump wavelength and pump magnetic field

amplitude are 2 cm and 2.5 kG, respectively. The electron beam energy is 2.6 MeV, (y. - 6);

20
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the beam current is S kA and the beam radius is 0.3 cm. The transverse equilibrium velocity is

v61 - 0.078 c, and the critical transverse velocity is v,, - 0.22 c. In the example we are bare.

ly in the weak-pump regime, since, DP is less than three times that of &L. Space charge

effects are, therefore, important in this example. Figure (8) is a plot of the space charge and

ponderomotive potential for w - 5.05 x 1012 sec' (k - 338 gm). This figure shows that col-

lective effects are of the same order of magnitude as the ponderomotive forces.

Figure (9) shows the amplitude of the vector potential amplitude of the scattered radia-

tion, A (z), and the spatial growth rate, r"- 8(0n A (z))/Oz, as a function of z for

- 5.05 x 1o12 sec-I.

Comparing the linear spatial growth rate obtained from the dispersion equation in (30),

(solid curve in Fig. (10)), with the growth rate from the linear regime of the non-linear calcula-

tion (cross (x)), we again obtain excellent agreement. The theoretical efficiency based on Eqs.

(38) and (31) (dotted curve in Fig. (10)) as compared with the results using the non-linear for-

mulation, (circles (0)), is remarkably good. The changes in wave number of the scattered radi-

ation, k+(z) near saturation (solid curve in Fig. (11)) did not enhance the efficiency because

the effect is balanced by the increase in the space charge potential wave.

The particle phase space plots of Figs. (12a-c), are very similar in nature to those in Figs.

(7a-d). Figure (12a) contains phase plots at z - 0.0 m and 0.35 m corresponding to the initial

position and a point in the linear interaction regime. At the z - 0.7 m plane just before satura-

*tion, Fig. (12b), shows the beginning of particle trapping. Figure (12c) contains the phase

space plot when the radiation field has saturated, z - 0.77 m.

Figure (13) shows the scaling of the linear spatial growth rate and maximum efficiency as

a function of the pump magnetic field amplitude, Do, at a fixed output frequency. The output
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radiation frequency is held constant by requiring that yO and ko be kept fixed. The electron

beam and magnetic pump parameters are basically the same as those of example I In Table 1,

except that the magnetic pump amplitude ranges from 0.25 kG to 6 kG. To keep the frequency

fixed, while Be is varied, the electron beam energy is changed such that "yo is held at the con-

stant value of 100. The output frequency used for Fig. (13) is chosen at the maximum growth

rate, which is very close to w - 2y 2o c ko - 2.525 x 1011 sec=' corresponding to a wavelength of

X- 0.75 gm. The critical transverse velocity, as discussed in section V, occurs for these

parameters at a pump magnetic field of B0 - 1.15 kG. Above this value of pump field the FEL

process is in the strong pump regime, while sufficiently below B0 - 1.15 kG the scattering pro-

cess is in the weak pump regime. In Fig. (13) the crosses (x) denote the linear spatial growth

rate obtained from the non-linear simulations, while the solid curve is obtained from the

dispersion relation in Eq. (30). Also in this figure is a comparison of efficiency estimated from

Eq. (38) using trapping arguments (dashed curve) and actual numerical simulation results (cir-

cles (0)).

b) Efficiency Enhancement by Contouring Magnetic Pump Period

According to Eqs. (24) and (26) the phase velocity of the total longitudinal wave poten-

tial, i.e. ponderomotive plus space charge is

vh - w/(k+ + ko) (42)

where w and k+ are the radiation frequency and wave number and k, - 2w/1 is the wave

number of the pump field. It has been assumed in writing (42) that the wavenumber of the

ponderomotive and space charge waves are identical. The longitudinal wave potential is respon-

sible for axially bunching and eventually trapping the electrons. If the magnetic pump period is

held fixed, the radiation field reaches its maximum value when the electrons are trapped at the

bottom of the longitudinal potential wells, as can be seen for example in Fig. (7d). Just before
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the radiation field saturates, the electroam are somewhat spatially bunched and trapped near the

bottom cf the wave potential, see Fig. (7c). The trapped electrons at this point can be con-

sidered, for our purpose, to form a macro-particle. By appropriately reducing the phase velocity

in Eq. (42) as a function of axial diatance down the intcraction region, the kinetic energy of

this macro-particle can be further reduced aid converted into wave energy. The phase velocity

must be reduced in such a way so that the inertial potential of th- trapped macro-particle is al-

ways less than the potential of the growing longitudinal wave. According to Eq. (42), the phase

velocity can be reduced by decreasing the period of the magnetic pump as a function of z. In

order for the macro-particle to remain trapped, the spatial r, te of change of the pump period

must be sufficiently slow. In principle virtually all the kinetic energy of the macr, )article can1

be extracted and converted to wave energy. However, not all the beam particles comprise the

macro-particle; some are untrapped. Converting particle kinetic energy into radiation by vary-

ing the wave velocity is somewhat analogous to the reverse process of particle acceleration in

say aa RF linac. In a wave accelerator, the energy associated with the accelerating slow elec-

tromagnetic wave is converted into particle kinetic energy. However, the wave energy in these

accelerators does not decay, since it is continuously resupplied by external microwave sources.

We will illustrate efficiency enhancement by contour-ing the pump period while holding

the amplitude of the pump magnetic vector potential constant, using the parameters of example

I in Table I. The same principle of efficiency enhancement can also be applied to example 2.

Figure (7c) shows that a z - 4.3 m, the electrons are somewhat spatially bunched at the optical

wavelength X - 0.75jsm and the radiation field is nearly saturated. At this point, we simply in-

creased the pump wavenumber ko (z) exponentially as a function of z instead of optimally con-

touring the pump period in units of cm-1 according to the empirical formula.

J 1.5z '< Zk

2k(z) 2 + [exp(O.002(z-zk))-IJ Z > Zk
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where zk - 4.3 m. The period of the magnetic pump, 1(z), is depicted in Fig. (14). The spatial

decrease of I results in a large -increase in the amplitude of the wave vector potential as shown

in Fig. (14). For this particular case, the contouring is terminated. at z - 13 m and the

efficiency at this point is already -0%. In principle, the pump wavelength contouring can be

continued and even higher efficiencies achieved. Figures (15a-d) are the phase plots with con-

touring at z - 5 m, 7 m, 10 m and 13 m. At z - 5 m, the majority of the particles are well

bunched. At z - 7 m, 12 out of 20 particles are trapped by the ponderomotive potential wells;

the same 12 particles remain trapped even at z - 13 m. Since the amplitude of the pondero-

motive potential is proportional to the radiation field it increases as the radiation field increases.

Once the particles are trapped the particles remain trapped and continually lose energy if the

pump period, I, is decreased adiabatically.

It should be noted that it is not appropriate to simply increase the pump magnetic field

amplitude as a function of axial position in order to enhance efficiency.37 Increasing B, spatially

deepens the ponderomotive potential well but it also slows down the axial electroni velocity and

thus synchronism is lost. To maintain synchronism ko must also be increased.
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Appendix A

Li GENERAL NON-LINEAR FORMULATION

In this appendix, we outline the general formulation of the FEL. equations taking into ac-

count spatial harmonics in the magnetic pump field as well as spatial and temporal harmonics in

the scattered fields. Furthermore, the polarization of the electromagnetic field is arbitrary and

permitted to evolve according to the non-linear particle field dynamics.

The vector potential of the periodic pump field containing spatial harmonics of variable

amplitudes and wave numbers is expressed as

A~) r-IAo(Z.) J~Cosm f k,(z') dz')& + sin (m f k-0 zW) dz I i.(l

where the amplitude and fundamental wavenumber are slowly varying function of z. This field

is not curl free, but is a good approximation to the exact helically symmetriC field- near the

r - 0 axis, when mk0 r, < 1, where ro is the radius of the electron beam. The pump magnetic

field associated with (Al) is given by

B,(z W - B.,,,Z W cost(m f 'kOZW) dz' pm() W

+ sin(m f k o(z')dz' +,Pr(Z)J ýYj,

where

B0 ~( )) +n Z 
-

8A , m(z) 1211/2

SBO,.(Z) - - J(8 ko(Z)Aom(Z)) 2 + 8Z

and

Vg"r(Z) - -tan- 1 8AnZ)1( ko)A ()J
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are slowly varying functions of z, The period of the rAth spatial harmonic of the pump magnetic

field is a function of z and is

.(z) -2 m kz)+. (z) +

where

m. k,(z) >> T )

Similarly the general form for the scattered elecuromagnetic field and electrostatic field in

terms of the vector potential A (z,t), and scalar potential 0 (z,t)

A (z,i) - ni (Ax.,.(z) cos(nfZk.,. (z')dz' - nowt +

+ AY, .(z) sin n f 'ky, W)dz' - n w t + O y,} (A2

and

4O(zjr) 01 ~(Z) CosjIf kl(z')dz' - Iwt + 0,1 )

where the amplitudes of the potentials Ax,1n(z), Ay,n(z), and * 1 (z) as well as wave numbers

k.,.(z), k,,, (z) and k,(z) are slowly varying functions of z.

Using the same procedure as used to derive Eqs. (7a-f) we obtain the following set of

equations for the spatially slowly -varying amplitudes and wavenumbers.

n2I±• - k•,,(z) Axn,(z) --- 0f'f (z, k.sf l(z')dz' n wlt + 0 dlo.

2n kA!/2(Z) _( A "(z) k. ,!(z)J ý- .f -J (zt) sinn'k,,,(z')dz' - nai + O.do,

n2 k;!(z) A.,(z) iin(nfky,(z')dz' - nail + Oy,,odt.
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'2, k'1/2(lz) tA ,(z)ky.I2(z)) vapA±fJ(z,t) Cos nf k~,,,(z')dz' - nwf Oyn) d,..

~f~~)-4f J,(z,t) sinhf. zkg(z')dz' l.At + 98,j dt.,.

12 kc, #I(z) - 4f " iz(zt) Cos(If ici(z')dz' - Ion + 0,!) dt,. (Aa-f)

Substituting the exprcssions for JVzAr from Eq. (13), into the Eqs. (A4a-f) and integrating, we

obtain

_t k~~(Z)1.,(z

42 _ k".2 z txn(z)k

-4Ie~n W f~oý f2c~~o'¶ 2 si (n fk,,, (z')&d' - ncJT(t.,,:) + e,14dt,.
c - j(0 , r(1" t,,z))

2a k.2(Z)j 4~~

- -4Ie~n., 2 w f-/- q1xr(to 1-(to~z))snLfk(')'- lTt,)+

-- 41elno ~a 2 /n csininJ k,,,(z')dz' - nw-rG,,z) + ev~fJdt0.
C)(. 'rho' *o,

2 ky,(z) - -Ien.,v 0 f 1" sni ,z)d'-Irt 0 z 2 J4

C22
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The expression of the particle orbit equation, (14), remains the same. Equations (14),

(A5a-f), and along with the definitions of momenta,

, 1 (z,,r) - ŽI-e(Ao,x (z) + Aj(z,,r)),

71y(ZT) -- J'L(A.y (z) + Ay(z, r)),
C

and

TI.-(Z. r) - M" Y (Z~r) vZ (Z' ), (A6)
form the full set of self-consistent FEL equations.

Setting n - m - I - 1, and requiring kx.I(z) - ky.,(z) - k+(z) and A•,(z) - Ay.(z) -

A (z), equations (A5a-f) reduce to the fundamental harmonic equations in (22a,b) and (23a,b)

for a circularly polarized electromagnetic field.

i
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Table I - Optical and Submillimeter Illustrations of FELs
(Constant Magnetic Pump Parameters)

Magnetic Pump Parameters Example #1 Example #2

Pump Wavelength 1 1.5 cm 2.0 cm
Pump Amplitude B. 6.0 kG 2.5 kG

Electron Beam Parameters i .,

Beam Energy E. 66 MeV (y. - 131) 2.6 MeV(v, - 6)
Beam Current 1. 2 kA 5 kA
Axial Gamma 20 100 5.4
Beam Radius 1o 0.1 cm 0.3 cm
Equil. I Velocity 0o1 6.4 x I0-3 0.078
Critical .. Velocity Pent 1.5 X 10-3 0.22
Beam Strength Parameter f 0.14 0.87
Self Potential Energy Spread AEVE. 0.08* 1.7%

Output Radiation Parameters

Radiation Wavelength 0.75 j&m 338 jum
Linear e-folding length* L, -- lm(k)-' 38 cm 5.3 cm
Efficiency* IQ 0.52% 9.2%
Saturated A-Field* A 33 volts 7.4 x 103 volts
Radiation Power* PO 0.69 GW 1.2 GW

*For maximum growth rate.
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FEL CONFIGURATION

I.M. AND E.S. FIELDS1, ~l~).41,1.1

900

H- INTERPACTION REGION

Pig. I - Sc2hematic of the ftec-clectton laser model. Trhe unmiodulated
electron beam eaten the interaction region from the left. The pump
field builds up adiabatically and reaches a constant amplitude for z > 0.

Fig. 2 - A diagram to illustrate the symmetry property of the
function GOO.. z. t) In the (t. to) plane.
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w = 2.525 ' 1015 sec-1 At0

LINEAR REGIME

I5I-025

amnA
-az

0

1.5 330 4.5 6.0
AXIAL DISTANCE 0METERS)

Fig., 3 -- Wave vector potentia A Wz and spatial linear growth rate r" as a function of
axi-,l distance for example I in the optWa regime. The frequency is chosen to give
the maximumf linear spatial growth rate.

3.5.

00%
-I 105

po

3.0

2.5 - 1.0%

2,0

0 o

,• 1.0 07,

"3 2.48 2.50 2.52 2.54 2.56 2.58 2.60

W (1015 sec1)

,ig, 4 - A comparison of the growth rate in the linear regime of the non-linear simulation
(crosses (x)) with the growth rate from linear theory (solid curve), and a comparison of
efficiency from non-linear theory (circles (0)) with that from linear theory using trapping
arguments (dashed ct.rve) as a function of frequency for example I.
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5.0
w= 2.525 x 1015 sec-

2.5 cw /'

/I

I
2.5-

kuJ) - It. (z) - koz) I I

25

I I II ••

1.5 3.0 4.5 6.0
AXIAL DISTANCE (METERS)

Fig. 5 - The variation In wavenumber of the scatteted radiation k+(z) and *he

variation in wavenumber or the space charge potential k(:) as a function of
axi&l distance for example I at the requency corresponding to maxim'im linear
spatial growth.

9.0 2.5

= 2.525 x 1015 sec-I

F Ipond 2.0

6001

0.0 00

-J 6.0

AXIAL DISTANCE (METERIS)

Figl. 6 -- A comparison of the magnitude of the ponderomotive potential 14,.,z) I and
the spece charge potential 14(z)[ as a function of axial distance for example I at the fre-
quency correspondingl tO maximum linoar spatial growth.
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1.0 /-80 8 = 2.525 x 101 sec-1

/\
/7

49
0.5z 2m

E

9 9 8 8 7 7 665 5 4 4 3 3 2 2 1 1 0/0
0 0

z'=om \/
> \ /

ý5 14
\ /

-0.5 \4

3 /

-1.0 -W
0 r/2 r 3w/2 2w

WT(toZ) - WT(OZ)

(a)

Fig. 7 - Pha.e space plots of velocity versus the relative time the particles in one beamlet cross the following

axial positions (a) - 0.0 m and z - 2.0 ,vi, (b) z - 4.0 m, (c) z - 4.3 m and (d) z - 45 m for example I
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1.0 -- O'p- -

S• 2\. z=4m

oI o, = 2.525 x 1010 sec 1

L.! 0 4 2 °

0.5 /

I
I

45 10,~ V z(Z) V ZO
0 I\

45

@6
> I \• 6

I\70

-1.0 70 0O

80

,,9 9, 0

0 ir/2 V 37r/2 21r

'JT(to, Z) - WT(O, Z)

(b)

"ig. 7 (Continued) - Phase space plots of velocity versus the relative time the particles in one beamlet cross
the following axial positions (a) z - 0.0 m and z - 2.0 m, (b) z - 4.0 m, (c) z - 4.3 m and (d) z - 45 m for

example I
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2.0

0,--" %. z = 4.3 m ^i
2.525 x 1015 sec-1

1.0 /

\ I

Eu 0. •v 2 z) = VI
0.0

S \2 3i

' -1.0 4 ON

> 4.\

677\-,

-2.0 7 6
8

/ %

-3.0 0

0 wt2 V 3 7r/2 27r

CT(to, Z) - OnT(O, Z)

(c)

Fig. 7 (Continued) - Phase space plots of velocity versus the relative time the particles in one beamlet cross
the following axial positions (a) z - 0.0 m and z - 2.0 m, (b) z - 4.0 m, (c) z - 4.3 m and (d) z - 45 m for
example 1
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2.4 -- -

z = 4.5m m1
a = 2.525 x 1015 sec- 1  /

1.2 - /
x\ I

N I",~ • vZ<.) =v z0

f2

08

S-1.2 -\\
> bh31 9 73 8

-2.4 .- 4--

\o

\ /N 0 0'

-3.6 ____ .. L. -

0 r'/2 T 31H2 27r

CUT(toZ) '-- WT(oz)

(W)

Fig. 7 (Continued) - Phase space plots of velocity versus the relative time the particles in one beamlet cross
the following axial position'. (a) - 0.0 m and z - 2.0 in, (b) z - 4.0 m, (C) z - 4.3 m and (W) z - 45 m for
example I
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*w 5.05 x 1012 sec-1

z 2.0 - 2.0 Z

S 1.0 -10u

0 .

o1p

o /,, ,,/ U),0.

0.0I 0.0

0.25 0.5 0.75 1.0

AXIAL DISTANCE (METERS)

Fig. 8 - A comparison of the magnitude of the ponderomotive potential I•.,ne(z) I and

the space charge potential I•(z)[ as a function of axial distance for example 2 at the fre-

quency corresponding to maximum linear spatial growth.

0.4

60 c= 5.05 x 1012 sec-1 Az)1. I V
6.0- 10.2

02 -0.1

o0.
•- LINEAR REGIME

-- - 0.2 u
_•3.0 - r = nA

z______ 0.
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m 0.0 0 .j

>-.
S--0.1 uW

I -0.2
0.25 0.5 0.75 1.0

AXIAL DISTANCE (METERS)

Fig. • - The wave vector potential A (z) and the spatial growth rate r as a tunction of
axial distance for example 2 at the froquency correspondlnS to ma-injm lI:ear growth.
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SW

w, 0.2 20%

-!-

0,0 z

- 0.1 10% " +

5I-

0 0

0.0
4.50 5.0 5.5 6.0

S(1012 sec- 1)

Fiji. 10 - A comparison of the growth rate in the linear regime of the non-linear simula-

tion (crosses (x)) with the growth rate from linear theory (solid curve), and a compari-

son of efficiency from the non-linear theory (circles (0)) with that from linear theory

using trapping arguments (dashed curve) as a function of frequency for example 2.

6.0
7 I =5.0 x 10 12 Sec-1
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/ I

0.0 \,
zIl
Z - Ir I I-

Sk(z - k,(z)-k°
3.0

•. -3.0-

0.25 0.5 0.75 1.0

AXIAL DISTANCE (METERSI

Fig. II - The variation in wavenumbir of th, scattercd radiation k+(z) and
the variation ia wav-pnmber of the space charge potential ?. (z) a3 a function of

axial distance for example 2 at th.i frequency corresponding to maximum linear
spatial growth.

41

, . , A,



SPRANOLE, TANG, AND MANHEIMER

7.5 7..
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(a)

Fig. 12 - Phase space plots of velocity versus the relative time the particles in one beamlet cross the following

axial positions (a) z - 0.0 m and z ,- 0.35 m, (b) z ,- 0.7 m and (c) z -- 0.77 m for example 2
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00 z Z=0.7m

2N = 5.05 x 1012 sec-'

2.52
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0 r/2 37r12 27r

CVT(to0 Z) - oT(o, z)

(b)

Fig. 12 (Continued) - Phase space plots of velocity versus the relative time the particles in one beamlet cross the
following axial positions (a) z - 0.0 m and z - 0.35 m, 4b) z - 0.7 m and (c) z - 0.77 m for example 2
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/ w=5.05 x 1012 sec- 1
\ ~/

\ 02

E-I
o.oo2

0.3
> 

3
71. 8

6' 79 
NA6Nkk

-1.5I I-
0 7r12  V 37r12  27r

wrlto, z) - wr(o, z)

(c)

Fig. 12 (Continued) - Phase space plots of velocity versus the relative time the particlesin one beamlet cross the

following axial po;';ns (a) '0 m and - 0.35 m, (b) z - 0.7 m and (c) z - 0.77 m for example 2
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L REGIME REGIME n1
0.04- 0 0.4% -

S0.03 -0.3%

LU

0.0

S0.01 0.1%

z P01 PCRIT

8 0 lkg)

Fig. 13 - A comparison of the maximum growth rate in the linear regime of the non-
linear simulation (croeses (x)) with the maximum growth rate from linear theory (solid
curve), and a comparison of efficiency from non-linear theory (circles (0)) with that
from linear theory using tu.e trapping arguments (dashed curve) as a function of the mag-
netic pump field amplitude for a fixed output frequency.

S2.0[- w 2.525 x 1015
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Fig. 14 - Enhancement of radiation field by decreasing the magnetic pump
period. The efficiency has increased from 0.52% at z - 4.5 m with a constant
pump period to 20% at z -13 -a with the period of the pump chrnglng as
shown.
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Fig. 15 - Phase plots with contoured magnetic pump period shown in Fig. (14) at (a) z -S m, (b) z 7 m,
(c) z -10 m and (d) z 13 mný
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(c)

Fig. 15 (Continued) - Phae plots with contoured magnetic pump period shown in Fig. (14) ut (a) z - 5 m, (b) z 7
() z - m and (d) -13m m
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(d)

Fig. 15 (Continued) - Phase plots with contoured miagnetic pump period shown in Fig. (14) at (a) z -5 m, (b) z - 7 m,
(c) z 1On and (d) z -13 m
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